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1. Introduction

The holographic principle has inspired many ways of exploring different spacetime geome-

tries. The basic idea of holography, that physics in a region of space can be described by

the fundamental degrees of freedom on its boundary, was originally applied to the area of

quantum gravity by ’t Hooft [1] and Susskind [2], but it was Maldacena [3] who developed

it into something more tangible: the AdS/CFT correspondence [4, 5] (For a comprehensive

review, see [6]).

Maldacena’s conjecture postulated that string theory with AdS5 × S5 boundary con-

ditions is equivalent to N = 4 super Yang-Mills theory, and AdS-type spacetimes have

become the subject of much work over the past decade. Many authors [7 – 14, among

others] have examined how to extract information from behind the horizon of black holes

using the boundary correlation functions of the CFT. From the spacetime point of view this
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involves using geodesics (both null and spacelike) travelling from one boundary to another

as probes. However, this focus on singularities leaves open the question as to how much of

a non-singular spacetime can be recovered using geodesic probes.1

What we aim to explore in this paper is how accurately and completely one can use

the data contained within the boundary correlators to recover the bulk metric in a static,

spherically symmetric, asymptotically AdS spacetime. We examine a variety of different

scenarios, and rather than merely looking at whether a recovery of the metric is possible,

we investigate the factors affecting its recovery in practice.

We make use of the relation between null geodesic endpoints and singularities in the

correlation functions of operators inserted on the boundary. In other words, that the

correlation function between any two points on the boundary which can be connected by

a null geodesic path diverges. Thus from the field theory we can identify, say, the set of

endpoints of null probes which all originated from the same point on the boundary. This

endpoint data can then be used to recover information about the bulk metric.

In this paper we develop two methods for extracting this information, and the essence

of both is that one can focus on specific radii by systematically using geodesics which

penetrate to different depths in the bulk. For null geodesics, there is only one effective

parameter which determines the minimum radius obtained by the geodesic in a given

spacetime, namely the ratio of the angular momentum to the energy. When this ratio is

close to one, the geodesic probe travels around the edge of the spacetime; as it is reduced,

the probe travels deeper into the spacetime before returning out to the boundary.

What we discover is that in certain types of metric, the process of using null geodesic

probes which penetrate to different depths can be used to recover the entire bulk metric

in a remarkably simple manner.

We begin in section 2 by briefly reviewing some background material on geodesics and

their behaviour in a five dimensional AdS spacetime. We observe that in this case, null

geodesics always travel between antipodal points on the boundary, as shown in figure 2.

In section 3 we move on to considering modified spacetimes which are still asymptoti-

cally AdS. In these metrics, null geodesics no longer necessarily terminate at their antipodal

points after travelling through the bulk; we are presented with a spectrum of endpoints,

which provides the data we need to recover the metric. We discover that on a plot of the

endpoints (see figure 3 for an example), the gradient at any point is related to the ratio

of the angular momentum and the energy of the corresponding null geodesic. Using this

relation together with the endpoint data, we devise a simple iterative method for extract-

ing the bulk metric, beginning close to the boundary where the spacetime can be taken to

be approximately AdS. After considering whether this idea can also be applied in a more

general scenario, we go on to develop a second method for iteratively recovering the metric.

These two methods are analysed in more detail in section 4, where we examine a num-

ber of issues arising from using them in practice. We propose several possible resolutions,

in each case attempting to strike a balance between the accuracy of the recovered metric

1For more general work on extracting behind the horizon information and holographic representations

of objects in AdS spacetimes see e.g. [15 – 22].
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information and the computational effort required to do so. We then describe a modifica-

tion to the second method which greatly improves the accuracy without a corresponding

increase in computational effort. Examples of the methods being used to recover the metric

information in two different spacetimes are then given in section 5, where the superiority

of the modified second method becomes apparent (see figures 6-9 and the corresponding

tables).

Section 6 looks at limitations in the methods which arise not from the numerics but

from the geometry of certain spacetimes we would like to consider. We examine how much

of the bulk metric can be recovered in setups where the metric gives a non-monotonic

effective potential for the geodesics, and where there is a singularity at the centre of the

spacetime.

In section 7 we discuss the results and mention possible extensions of the project, such

as using the endpoint data of spacelike geodesics or considering non-static, non-spherically

symmetric spacetimes.

2. Background

The metric for a five-dimensional Anti-de Sitter spacetime is often given in the form:

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

3 (2.1)

f(r) = 1 +
r2

R2
(2.2)

where R is the AdS radius.

To calculate the geodesic paths, we first suppress two of the angular coordinates by

setting the geodesics to lie in their equatorial plane. Then from the form of the metric

we can see the existence of two Killing vectors, ∂/∂t and ∂/∂φ, where φ is the remaining

angular coordinate, which lead to two constraints on the motion. The first constraint is

related to the energy and the second to the angular momentum:

E = f(r)ṫ (2.3)

L = r2φ̇ (2.4)

where ˙= d
dλ , for some affine parameter λ.

The geodesic paths can be found by extremizing the action

S =

∫

ẋ2dλ (2.5)

which leads to a third constraint on the motion, given by:

ẋ2 = −f(r)ṫ2 +
ṙ2

f(r)
+ r2φ̇2 (2.6)

where ẋ2 ≡ κ = +1,−1, 0 for spacelike, timelike and null geodesics respectively.
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Figure 1: Plot of the effective potential in pure AdS (with R = 1) for a sample of null geodesics,

with E = 1.0 and L = 0.0, 0.1, 0.2, 0.4, 0.6 and 0.8.

By substituting (2.3) and (2.4) into (2.6), these three equations can be combined

together to eliminate ṫ and φ̇, giving:

κ = −
E2

f(r)
+

ṙ2

f(r)
+

L2

r2
(2.7)

which can be rewritten so as to introduce the concept of an effective potential for the

geodesics:

ṙ2 + Veff = 0 (2.8)

with

Veff = −
(

f(r)κ + E2 −
f(r)L2

r2

)

. (2.9)

Note that the r.h.s. of (2.8) is zero, and so any part of the effective potential which

is positive represents a potential barrier, see figure 1. The minimum value of r obtained

by spacelike and null geodesics incoming from r = ∞ is given by the largest solution to

Veff = 0, and is the endpoint (starting point) of the ingoing (outgoing) part of the geodesic.

The paths of geodesics can be calculated and plotted numerically using these equations,

and for null geodesics in pure AdS, they can also be calculated analytically (see appendix

A).

For null geodesics in AdS space, their endpoints always lie at the antipodal point no

matter what the ratio of angular momentum to the energy. They can be plotted using the

compactification given in appendix A, which rescales the boundary at r = ∞ to lie on a

circle of radius π/2, see figure 2.

As mentioned in the introduction, the endpoints of null geodesics correspond to sin-

gularities in the set of correlation functions in the field theory lying on the boundary of
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t

Figure 2: A plot of some null geodesic paths passing through an AdS spacetime, all starting from

the same point t = 0, φ = 0 on the boundary at r = ∞ (compactified to lie at arctan(∞) = π
2

in

the diagram).

the spacetime. For the rest of the paper we assume that the endpoint data we use can be

generated in such a fashion from the field theory.

3. Asymptotically AdS spacetimes

We can consider a small modification to the pure AdS spacetime described by (2.1) and

(2.2), by replacing (2.2) with:

f(r) = 1 +
r2

R2
− p(r) (3.1)

where p(r) is an analytic function which behaves as r2 for small r and r−2 for large r, such

that the metric is non-singular everywhere.2

2The r2 behaviour of p(r) at small r ensures that we avoid a conical singularity at the origin.
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Figure 3: A plot of the null geodesic paths passing through a modified AdS spacetime, all starting

from the arbitrary point t = 0, φ = 0 on the boundary and with positive angular momentum. The

corresponding full spectrum of null geodesic endpoints for this spacetime is shown on the right.

3.1 Analysing the geodesic endpoints

In this modified spacetime, null geodesic paths do not always end at their antipodal point on

the boundary; their final t and φ coordinates depend on the ratio of the angular momentum

(L) to the energy (E). From a physical point of view this can be thought of as the extra

term p(r) representing an attractive modification to the centre of the spacetime, such

that the geodesics follow a more curved path through the bulk, and thus “overshoot” the

antipodal point. Their extra path length then also accounts for the increase in the time

taken to reach the boundary at infinity.

If we consider the set of null geodesics all beginning at the same point, (t0, φ0) on the

boundary, we can obtain the full spread of endpoints by varying L/E from 0 to 1. Figure 3

shows an example of the geodesic paths in a modified AdS spacetime alongside a plot of

their endpoints.

From this plot of the endpoints, what information about the bulk metric can be re-

covered? For a geodesic beginning at (t0, φ0) and ending at (t1, φ1) on the boundary, we

have:

∫ t1

t0

dt = 2

∫ ∞

rmin

1

f(r)
√

1 − y2 f(r)
r2

dr (3.2)

∫ φ1

φ0

dφ = 2

∫ ∞

rmin

y

r2

√

1 − y2 f(r)
r2

dr (3.3)

where rmin is minimum radius obtained by the geodesic, and we have introduced the

parameter y = L/E to denote the ratio of the angular momentum to the energy.
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We note that for a fixed metric, the final time and angular coordinates will be functions

of y only, and so we can write:
∫ t1

t0

dt = t1 − t0 ≡ t(y) (3.4)

∫ φ1

φ0

dφ = φ1 − φ0 ≡ φ(y) (3.5)

If we define the function g(y, r) as:

g(y, r) =
1

√

1 − y2 f(r)
r2

(3.6)

and consider the derivative of (3.2) and (3.3) with respect to y we have:

dt(y)

dy
= 2

d

dy

(
∫ ∞

rmin

g(y, r)

f(r)
dr

)

(3.7)

= 2y

∫ ∞

rmin

(g(y, r))3

r2
dr −

(

2 g(y, r)

f(r)

)

∣

∣

∣

r=rmin

drmin

dy
(3.8)

and

dφ(y)

dy
= 2

d

dy

(∫ ∞

rmin

y g(y, r)

r2
dr

)

(3.9)

= 2

∫ ∞

rmin

(g(y, r))3

r2
dr −

(

2 y g(y, r)

r2

)

∣

∣

∣

r=rmin

drmin

dy
(3.10)

Comparing the integral terms in the two equations above, we see that they are identical

upto a factor of y. We can then use the fact that at r = rmin, y2 = f(rmin)
r2
min

to rewrite the

first equation as:

dt(y)

dy
= 2y

∫ ∞

rmin

(g(y, r))3

r2
dr − y

(

2 y g(y, r)

r2

)

∣

∣

∣

r=rmin

drmin

dy
(3.11)

After checking that the divergent piece of the integral cancels with the divergent second

term in (3.11) (see appendix B) we therefore have that:

dt(y)

dy
= y

dφ(y)

dy
(3.12)

which can be rewritten as
dt

dφ
= y(φ) (3.13)

Thus from the plot of the endpoints, by taking the gradient at each point we are able

to obtain the value of y for that geodesic. Note that at no point in this derivation have we

used the fact that the spacetime is asymptotically AdS, and it can easily be shown that

the result holds for any static, spherically symmetric spacetime (i.e. any metric of the form

of (3.29)).3 Calculations along these lines are also not restricted to null geodesics, see [14]

for similar derivations involving spacelike ones. In the next section we will see how we can

further use this to recreate the metric function f(r).

3It is also not necessary for the boundary on which the geodesics begin and end to be at infinity; the

result is valid for any spherical boundary within the bulk.
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3.2 Reconstructing f(r): Method I

The method involves iteratively recovering f(r) starting from large radius and working

down towards r = 0. We are working in an asymptotically AdS spacetime. This means

that as r → ∞, f(r) → r2/R2 + 1; thus we can say that for r ≥ rn for some rn which

can be arbitrarily large, f(r) ≈ r2/R2 + 1. We set the AdS radius (R) to one, and by

considering large enough y = yn such that the minimum radius, rmin, corresponds to rn,

(3.2) becomes (setting the initial time, t0, to be zero):

tn =

∫ tn

0
dt = 2

∫ ∞

rn

g(yn, r)

f(r)
dr (3.14)

≈ 2

∫ ∞

rn

1

(r2 + 1)
√

1 − y2
n

r2+1
r2

dr = π (3.15)

as we would expect, as geodesics remaining far from the centre of the space would not “see”

the modification and thus behave as in pure AdS. In this case we can solve the equation

for the minimum radius:

y2
n =

r2
n

f(rn)
=

r2
n

r2
n + 1

(3.16)

to get rn in terms of yn, which is determined from the geodesic endpoints. Thus we can

determine rn (and hence f(rn) = r2
n + 1).

If we now consider a geodesic with slightly lower ratio of angular momentum to energy,

say with yn−1 = yn − ε, where ε > 0, we have the equation:

tn−1 = 2

∫ ∞

rn−1

g(yn−1, r)

f(r)
dr (3.17)

which can be split up as follows (noting that rn−1 < rn):

tn−1 = 2

∫ rn

rn−1

g(yn−1, r)

f(r)
dr + 2

∫ ∞

rn

g(yn−1, r)

f(r)
dr (3.18)

The second integral can be evaluated by setting f(r) = r2 +1 as in (3.14), and we have

2

∫ ∞

rn

g(yn−1, r)

f(r)
dr = π − 2 arctan

(

√

(

1 − y2
n−1

)

r2
n − y2

n−1

)

(3.19)

We can approximate the first integral by taking a Laurent expansion about the point

rn−1. This gives, to lowest order:

∫ rn

rn−1

g(yn−1, r)

f(r)
dr ≈

∫ rn

rn−1

(r − rn−1)
−1/2

f(rn−1)
√

2
rn−1

− f ′(rn−1)
f(rn−1)

dr (3.20)

=
2
√

rn − rn−1

f(rn−1)
√

2
rn−1

− f ′(rn−1)
f(rn−1)

(3.21)
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where we have used that y2
n−1 = r2

n−1/f(rn−1) and integrated. This can be simplified

further by writing4:

f ′(rn−1) ≈
f(rn) − f(rn−1)

rn − rn−1
(3.22)

Thus we have:

tn−1 ≈
4(rn − rn−1)

f(rn−1)
√

2rn

rn−1
− f(rn)

f(rn−1) − 1
+ π − 2 arctan

(

√

(

1 − y2
n−1

)

r2
n − y2

n−1

)

(3.23)

which can be used in conjunction with y2
n−1 = r2

n−1/f(rn−1) to calculate rn−1 and f(rn−1),

as we know tn−1 and yn−1 from the geodesic endpoints, and rn and f(rn) have already

been calculated.

For general tn−i we split the integral into several pieces; the two “end” integrals, which

we evaluate as in (3.19) and (3.20), and a series of integrals in the middle which can be

evaluated using the trapezium rule or similar (see figure 4). The formula for general tn−i

is then given by (for i ≥ 2):

tn−i = 2

∫ ∞

rn−i

g(yn−i, r)

f(r)
dr (3.24)

≈ An−i + Bn−i + Cn−i (3.25)

where

An−i =
4 (rn−i+1 − rn−i)

f(rn−i)
√

2rn−i+1

rn−i
− f(rn−i+1)

f(rn−i)
− 1

(3.26)

Bn−i =

i−1
∑

j=1

(rn−j+1 − rn−j)

(

g(yn−i, rn−j+1)

f(rn−j+1)
+

g(yn−i, rn−j)

f(rn−j)

)

(3.27)

Cn−i = π − 2 arctan

(

√

(

1 − y2
n−i

)

r2
n − y2

n−i

)

(3.28)

For a spacetime of the form of (3.1) with monotonic effective potential, we can use the

above to recover the function f(r) down to r = 0. See section 5 for examples.

3.3 More general spacetimes

So far we have restricted ourselves to considering metrics of the form of (2.1), however, we

can look to extend this further by considering the most general static, spherically symmetric

spacetimes, given by metrics of the form:

ds2 = −f(r)dt2 + h(r)dr2 + r2dΩ2
3 (3.29)

where the dr2 coefficient is allowed to be different to the dt2 coefficient. Equations (2.3)

and (2.4) for the geodesics remain unchanged, and the third is now given by:

ṙ2 −
(

κ

h(r)
+

E2

f(r)h(r)
−

L2

h(r)r2

)

= 0 (3.30)

4Note that this linear approximation of the gradient is only fine whilst rn − rn−1 is kept small.
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Figure 4: A plot showing how the integrand of (3.24), is split up into two end curves and a number

of trapeziums in order for the integral to be well approximated. The actual curve is shown in black,

with the approximations in red.

where κ = 0 for the null case. We can combine the equations together as before to give the

integral equations:

∫ t1

t0

dt = 2

∫ ∞

r0

1

f(r)√
h(r)

√

1
f(r) −

y2

r2

dr (3.31)

∫ φ1

φ0

dφ = 2

∫ ∞

r0

y

r2√
h(r)

√

1
f(r) −

y2

r2

dr (3.32)

The question now is whether we can use the two equations above along with the

expression y2 = r2
0/f(r0) relating the parameter y to the minimum radius to recover both

f(r) and h(r) and thus reconstruct the bulk metric from the endpoints. This initially

appears possible as we haven’t explicitly used our expression for φ, (3.32), in our method

of the previous section. However, our observation that the gradient of the endpoints is given

by the angular momentum (3.13) suggests that we don’t have three linearly independent

relations. Attempting to continue as before, by approximating the spacetime as pure AdS

at some large radius and working inwards, the degeneracy soon becomes apparent (see

appendix C), and we are unable to recover bulk metric information in these more general

spacetimes (unless we a priori know the relationship between h(r) and f(r)).

3.4 Reconstructing f(r): Method II

There is an alternative method for reconstructing f(r) in a spacetime of the form of (2.1)

which makes the degeneracy of the expressions for t and φ more apparent. If we start from

– 10 –
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expression (3.12) and integrate over y we get:

∫ t

dt′ =

∫

y
dφ

dy
dy (3.33)

which can be integrated by parts:

t(y) = y φ(y) −
∫

φdy (3.34)

and then rewritten using the expression for φ from (3.3):

t(y) = y φ(y) −
∫ ∫ ∞

rmin

2y

r2

√

1 − y2 f(r)
r2

dr dy (3.35)

We can now reverse the order of integration, and as the function f(r) has no dependence

on y, integrate over y:

t(y) = y φ(y) +

∫ ∞

rmin

2

f(r)

√

1 − y2
f(r)

r2
dr (3.36)

Taking the initial conditions to be (φ0, t0) = (0, 0), we can say that for any endpoint

(φj , tj) on the boundary,

tj −
dt

dφ

∣

∣

∣

(φj ,tj)
φj =

∫ ∞

rj

2

f(r) g(yj, r)
dr (3.37)

where we have renamed the minimum r as rj and used our definition for g(y, r) from before.

This, coupled with the equation for the minimum r,

y2
j =

r2
j

f(rj)
(3.38)

allows the metric function f(r) to be fully reconstructed from the plot of the endpoints,

using a method of approximating the integral similar to that in section 3.2.

4. Analysing the two methods

Whilst the previous methods both in principle allow the bulk metric to be fully recovered

(from f(rn) down to f(0), with rn arbitrarily large), there are a number of factors to take

into account when performing the reconstruction in practice, in order to obtain a balance

between accuracy and computational effort.

Consider a setup where we divide the range of y into N +1 equal segments, with y0 = 0

and yN+1 = 1, so that we have N +1 steps in the process of recovering f(r) (Note that the

first step in the iteration uses yN rather than yN+1, as we want the first minimum radius

to be finite).

There are a number of issues with recovering f(r) in this scenario. We firstly observe

that splitting y up into equal segments means that the minimum radii will not be equally

– 11 –
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separated; there will be a greater number of low radius points (due to the shape of Veff ).

This initially appears helpful, as we expect most of the bulk metric’s deviation from pure

AdS to be localised close to the centre, and so a greater number of data points in this

region should improve our estimate of f(r).

However, as both methods for recovering f(r) involve approximating integrals over r,

accuracy is only maintained if the step size is kept relatively small for all r; whilst starting

with yN as close to one as possible allows f(r) to be recovered from as large a radius as

possible (as higher yN means higher rN ), this also means the first few steps in r will be

unacceptably large. This can be countered by ensuring the number of steps is appropriately

large, however, this will then result in a longer computational time. For example, in the

asymptotically AdS spacetime with f(r) given by

f(r) = 1 + r2 −
4r2

(r2 + 1)(r2 + 8)
(4.1)

if use a step size in y of 0.0005 and take the initial yN to be 0.9995, the corresponding

minimum radius rN ≈ 31.5. The minimum radius corresponding to yN−1 = 0.999 is only

rN−1 ≈ 22.3 however, and such a large jump in the radius causes problems with using our

approximation of the form of (3.23). Whilst the original Laurent expansion of (3.20) is

still fairly accurate over this distance, our approximation of the gradient by

f ′(rn−i) =
f(rn−i+1) − f(rn−i)

rn−i+1 − rn−i
(4.2)

is not. For the example above, the actual value of f ′(r) at r = 22.3 is 44.5, whereas the

value given by (4.2) is 53.8; a large discrepancy.

We can still split the yn linearly (in order to keep the majority of the points at low

radii), however, we choose the initial yN to be be slightly lower. This enables our first step

in the radius to be kept small.5 In our example of (4.1), if we choose yN = 0.9985 and

keep the step size at 0.0005, we find that rN − rN−1 ≈ 2.5 which whilst still quite large,

is much more acceptable than the value of 9.2 we had previously. Table 1 shows how this

discrepancy in the gradient affects the extraction of f(r) by the method of section 3.2 for

the example of (4.1); it is worth noting at this stage that even with the lower choice of

starting y the recovered estimate for f(r) is still quite poor with a step size of 0.0005. This

is important because although we could lower yN even further, we must keep our initial

radius reasonably large; if we choose yN to be too low, we risk having rN being too small,

such that our assumption that the spacetime there is approximately that of pure AdS is no

longer valid.6 We can keep our choice of yN high by reducing the step size (as in the lower

5This can be checked in practice by calculating rN and rN−1 for a given choice of initial yN ; if the

difference rN − rN−1 is too great, either lower yN or increase N until it’s acceptable.
6This poses an interesting question as to how one determines what a “reasonable” initial radius is for an

unknown spacetime. If our rN was too low, such that the metric was not approximately pure AdS at this

point, how would this be apparent from the extracted estimate of f(r)? A simple solution is to check the

behaviour of the estimate at r close to rN ; if the function does not continue as r2 + 1 (i.e. pure AdS) down

to say r = rN/2, then the chosen initial radius was too small. It is also worth noting that in a physical

situation, one would naturally expect ordinary matter to remain within a radius of order of R from the

centre, due to the confining AdS potential.
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Initial y Step size α (4) β (1) γ (8)

0.9995 0.0005 0.778 0.971 0.971

0.9985 0.0005 1.39 1.52 1.52

0.9995 0.00005 2.37 2.24 2.24

0.9985 0.00005 3.42 1.13 6.18

Table 1: Comparing the accuracy of using two different values for yN to recover the bulk metric

information. The actual values for α, β and γ, which correspond to the three numerical factors in

(4.1) (and are properly defined in (5.1)), are given in brackets. More details on how these estimates

were generated is given in section 5.

half of table 1), but at the expense of additional computational time (For more details on

the numerical extraction see the examples in the next section).

There is, however, another problem with numerically reconstructing f(r) using the

approximation of the gradient by (4.2). If we examine the form of the term containing

f ′(r), namely the An−i in (3.24), whose equivalent in method II is:

An−i =
4

3

(rn−i+1 − rn−i)

f(rn−i)

√

2

rn−i
−

f ′(rn−i)

f(rn−i)
(4.3)

we note that the f ′(r) appears with a negative sign inside the square root. As our ap-

proximation of f ′(r) by (4.2) is in general an overestimation of the gradient, as for large

r, f(r) ∝ r2 + 1, when solving for rn−i and f(rn−i) the term under the square root can

become negative, leading to the estimates being imaginary. This can occur even if the

overestimation is small.

There are a number of possible ways in which to resolve this problem. We can firstly

consider a different approximation of the gradient to the one given in (4.2); the over-

estimation can be avoided by using an expression such as

f ′(rn−i) =
1

2

(f(rn−i+1) − f(rn−i)

rn−i+1 − rn−i
+

f(rn−i) − f(rn−i−1)

rn−i − rn−i−1

)

(4.4)

which takes the average of the two nearest linear tangents to the curve. Inserting this

expression into either of our iterative methods for recovering f(r), however, immediately

raises a new problem from a computational point of view; we now cannot recover a value

for rn−i and f(rn−i) at each step, as the n − i term now also depends on the subsequent

term, n − i − 1, as well as the previous. We now have to determine all the equations for

the various steps and solve them together at the end to recover f(r).7 This is a much more

complicated operation than numerically solving at each step, and leads to a considerable

increase in the computational effort required to reconstruct the metric function.

Another approach is to take a higher order series expansion around the minimum radius

in our approximation of the integral, however we then need an expression for the second (or

higher) derivative of f(r), which leads to an escalation of the problems mentioned above;

7Note that the final gradient f ′(r0) will have to be approximated using an expression of the form of

(4.2)
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Figure 5: A plot showing an example curve (the integrand of (3.37)) to be approximated in method

II. The leftmost part of the curve is initially a vertical parabola.

either the overestimation caused by only using approximations involving larger r terms

upsets the recovery of rn−i and f(rn−i), or we need to wait and solve all the equations at

the end of all the steps, again greatly increasing the computational effort required.

The gradient of f(r) appears in the integral of (3.24) because of the Laurent expan-

sion we have used in its approximation; in method II, however, we can use a different

approximation which avoids this.

Figure 5 shows a plot of a typical curve we are trying to approximate. The crucial

difference between this type of curve and that of figure 4 is the behaviour at the minimum

radius, which is due to the positioning of the g(y, r) term in equations (3.24) and (3.37).

That g(y, r) appears in the denominator of (3.37) rather than the numerator results in the

curve of figure 5 having an infinite gradient at the minimum radius. We can then describe

the leftmost part of the curve as following a vertical parabolic path. Thus instead of using

a Laurent approximation at this point, we can make a geometric one and say that:

An−i =
4

3

(rn−i+1 − rn−i)

f(rn−i+1)

√

1 −
y2

n−i

y2
n−i+1

(4.5)

where we have used that the area under a parabola is 2/3 the width multiplied by the

height. The gradient of the curve will always be infinite at the minimum radius, and

as the other terms (Bn−i and Cn−i) do not depend on f ′(r), we avoid the need for an

approximation to the gradient of the form of (4.2). Importantly, we also avoid any increase

in the computational effort required to recover f(r). It is also worth noting that there

is no similar geometric argument for such an approximation to be applied in the original

method of section 3.2. For similar step size this modification leads to a considerably more

accurate estimation of f(r) from the endpoints, as we shall see in the next section, where

we use both methods to reconstruct f(r) in two different cases.
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Initial y Step size α (4) β (1) γ (8)

0.9985 0.002 0.371 0.530 0.530

0.9985 0.001 0.797 0.995 0.995

0.9985 0.0005 1.39 1.52 1.52

0.9985 0.0002 2.18 2.11 2.11

0.9985 0.0001 2.74 1.47 3.92

0.9985 0.00005 3.42 1.13 6.18

0.9985 0.00002 3.80 1.11 7.20

Table 2: Best fit values (to 3 s.f.) for α, β and γ for data generated using method I, with the

actual values indicated in brackets. Only in the lower half of the table do the estimates for the

three unknowns really start to converge to the correct values.

5. Examples

Consider a small deviation from pure AdS, such as the spacetime with metric function

f(r) as in (4.1). Choosing our initial value of y to be yN = 0.9985 (for the reasons of

the previous section), we investigate the ability of the two methods to extract the bulk

information. Figure 6 shows our approximations of f(r) generated using method I for a

range of different step sizes.

For this first example, the top set of curves in figure 6 suggest that we are easily able

to extract the bulk metric using any of the step sizes, as they all appear to lie very close to

the actual function f(r). However, this is somewhat misleading, as we shall see. In order

to more closely examine the accuracy of the recovered bulk data, we use a non-linear fit of

the form:

f(r) = 1 + r2 −
α r2

(r2 + β)(r2 + γ)
(5.1)

to obtain values for α, β and γ for each estimate, and the results are presented in table 2.

As we mentioned above, looking at the top plot of figure 6, all of the approximations seem

very close to the original function, however, table 2 shows this not to be the case. Until we

go to a very small step size, we are unable to accurately extract what one might consider

the important metric information; if the modification of the spacetime caused by the extra

term in (4.1) was to correspond to some physical phenomenon, we might expect its “mass”

and “extent” to be related to the quantities α, and β and γ respectively. Whilst the best

fits we obtain are converging to the correct values as we take the step size smaller, we are

already calculating a significant number of terms to generate these estimates.

If we compare this to the fits we obtain using the data calculated via method II, with

the modification to the An−i terms given in (4.5), we see a notable difference in the results.

The estimates again all look good when plotted with the actual function f(r), as we see

in figure 7, however, as the bottom plot shows, this accuracy is now maintained at smaller

scales. Table 3 shows the new values for α, β and γ for each step size, obtained using the

same non-linear fit, (5.1), as before.

Comparing these estimates with those in table 2, we see that the recovered values for

α, β and γ are far more accurate using this alternative method, for each choice of step size.
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Figure 6: Plots showing the various estimates for f(r) given in table 2 (i.e. produced using method

I), compared to the actual metric function f(r) from (4.1). Whilst all the estimates seem good

fits over a large radius (top figure), closer consideration of the curves highlights their differences

(bottom figure), which lead to the inaccurate values calculated for α, β and γ from the larger step

size estimates.

Initial y Step size α (4) β (1) γ (8)

0.9985 0.002 1.61 2.01 2.01

0.9985 0.001 3.34 1.16 6.01

0.9985 0.0005 3.92 1.01 7.77

0.9985 0.0002 3.99 1.00 7.97

0.9985 0.0001 4.00 1.00 8.00

Table 3: Best fit values (to 3 s.f.) for α, β and γ for data generated using method II, with the

actual values indicated in brackets. Using the alternative method, we are able to pick out rough

values for the three unknowns as early as with a step size of 0.001, and by a step size of 0.0001 the

estimates have converged to the correct values (to 3 s.f.).

We now have a very good fit to the actual values of 4,1 and 8 in (4.1) obtained using a

relatively low number of steps, and thus relatively quickly. Indeed, we see that to obtain

the same degree of accuracy using method I we need to use step sizes which are more than

twenty five times smaller, which (assuming a standard computational time per step) would
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Figure 7: Plots showing the various estimates for f(r) given in table 3, compared to the actual

metric function f(r) from (4.1). Using method II for producing the estimates has resulted in much

closer fits, both over a large radius (top figure), and at smaller scales (bottom figure). This is

reflected in the highly accurate values of α, β and γ determined from the all but the largest step

size estimates.

therefore take at least twenty five times longer to compute. Thus using the modified second

method offers a significant improvement over the original.

Can we use the methods to recover a more complicated f(r)? If we consider a spacetime

similar to that in (4.1), but which is further modified at low r by an extra term:

f(r) = 1 + r2 −
4r2

(r2 + 1)(r2 + 8)
+

3r sin(2r)

r4 + 1
(5.2)

we can use both methods to generate estimates for f(r), and using a non-linear fit of the

form of:

f(r) = 1 + r2 −
αr2

(r2 + β)(r2 + γ)
+

χr sin(ηr)

r4 + λ
(5.3)

we can judge the accuracy of the estimate against (5.2). Using the same starting value for

y and the same step sizes as before, we obtain the results shown in tables 4 and 5, and

figures 8 and 9.

Once again we see that the second method produces a much better estimate of f(r)

than the first; the difference in the accuracy is again significant. What is also noticeable
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Initial y Step size α (4) β (1) γ (8) χ (3) η (2) λ (1)

0.9985 0.002 -1380 133 133 2.60 2.20 1.20

0.9985 0.001 0.0824 0.426 0.426 2.69 2.12 1.04

0.9985 0.0005 0.790 0.880 0.880 2.96 2.03 0.981

0.9985 0.0002 1.69 1.25 1.25 3.06 1.95 0.940

0.9985 0.0001 2.23 1.62 1.62 3.05 1.94 0.946

0.9985 0.00005 2.87 2.39 2.39 3.00 1.97 0.985

0.9985 0.00002 3.68 1.31 6.50 3.09 2.00 1.04

Table 4: Best fit values (to 3 s.f.) for α, β, γ, χ, η and λ for data generated using method I, with

the actual values indicated in brackets. In this more complicated modification to AdS, the presence

of the sine term masks the finer structure and prevents the original method from converging towards

the correct values of β and γ until our smallest choice of step size.
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Figure 8: Plots showing the various estimates for f(r) given in table 4 (i.e. produced using method

I), compared to the actual metric function f(r) from (5.2). The convergence of the estimates to the

actual curve can be seen in both plots, and whilst the values obtained for χ, η and λ are reasonably

good for all step sizes, only upon using the smallest step size do we start to pick out the α, β and

γ values. This is why, in the lower figure, the red curve representing the final estimate appears

to be a worse fit to the actual curve than some of the others; the range of r shown highlights the

accuracy of the χ, η and λ values rather than the α, β and γ ones.
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Initial y Step size α (4) β (1) γ (8) χ (3) η (2) λ (1)

0.9985 0.002 1.17 1.46 1.46 3.47 1.94 1.12

0.9985 0.001 2.90 2.52 2.52 3.03 1.97 0.998

0.9985 0.0005 3.85 1.06 7.38 3.00 2.00 1.00

0.9985 0.0002 3.98 1.01 7.93 3.00 2.00 1.00

0.9985 0.0001 4.00 1.00 7.99 3.00 2.00 1.00

0.9985 0.00005 4.00 1.00 8.00 3.00 2.00 1.00

Table 5: Best fit values (to 3 s.f.) for α, β, γ, χ, η and λ for data generated using method II, with

the actual values indicated in brackets. Once again, the alternative method proves much more adept

at accurately estimating the unknowns, and converges to the correct values almost immediately.
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Figure 9: Plots showing the various estimates for f(r) given in table 5 (i.e. produced using method

II), compared to the actual metric function f(r) from (5.2). Only the estimates generated using

the largest two step sizes are visibly distinguishable from the actual curve, as the the values of α,

β, γ, χ, η and λ are all quickly picked out using this alternative method.

in this slightly more complicated example is that the presence of a more prominent feature

in the metric function (in this case the small oscillation from the sine term) can obscure

the finer details of the spacetime. This is most obvious in the results from using method

I (see table 4, where we can clearly see that whilst the numerical factors corresponding to

the sine term (χ, η and λ) are easily determined even at a large step size, it then requires

a smaller step size to pick out the α, β and γ values than it did in the first example.
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Whilst the second example has shown that the methods can be used for f(r) which have

a significant deviation from pure AdS near the centre, there remain problems in applying

the methods in certain circumstances, which are examined in the next section.

6. Limitations

There are limitations in recovering f(r) all the way down to r = 0 in the cases where

the metric is non-singular but does not give a monotonic effective potential for the null

geodesics, and also when there is a curvature singularity at r = 0.

6.1 Metrics with a non-monotonic effective potential

There is a problem with the method for reconstructing f(r) if the metric is such that for

some critical value of the angular momentum, the null geodesics can go into an unstable

orbit (assuming fixed energy). This is indicated on the endpoint plot by the φ coordinate

heading off to infinity, and the presence of a jump in the time taken by the geodesics with

L < Lcrit compared with those with L > Lcrit, see figure 10 for an example.

The reason for these unstable orbits is because the effective potential for the metric

isn’t monotonic; the orbits occur when the greatest radius (rp say) for which dV/dr = 0

corresponds with that for which V = 0, see figure 11. This non-monotonicity also explains

the time delay for those geodesics with angular momentum lower than Lcrit, indicated by

the gap between the asymptotes in figure 10: those with slightly lower L have an effective

potential of the form shown as the dashed blue curve in figure 11, and travel down to

minimum radius rp−1, whereas those with L ≥ Lcrit have minimum radius greater than

or equal to rp, indicated by the dashed red curve. The extra (non-negligible) distance

rp − rp−1 travelled by the geodesics results in the time delay seen in the endpoints.

We thus have the situation where we have no geodesics with minimum radius rq, where

rp−1 < rq < rp, and this is where our iterative methods break down. Although we can

begin by using one of the methods from earlier to recover f(r) down to r = rp, which

corresponds to using the endpoints in the “lower branch” of figure 10, we cannot continue

past this point. Using method I, say, the final term of the iteration will be:

tp = 2

∫ ∞

rp

1

f(r)
√

1 − y2
p

f(r)
r2

dr ≈ Ap + Bp + Cp (6.1)

with Ap, Bp and Cp defined as in section 3.2. As the next term would involve an integration

over the range rp−1 to rp, which cannot necessarily be taken to be small, it cannot be well

approximated by the methods we have used previously.

The gap between the upper and lower branches of figure 10 tends to a constant time

delay, td, as φ → ∞, and it is this which corresponds to the integral we are unable to well

approximate:

td = 2

∫ rp

rp−1

1

f(r)
√

1 − y2
p−1

f(r)
r2

dr (6.2)

where we note that in the limit φ → ∞ we have that yp−1 = yp.
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Figure 10: Plot of the endpoints of null geodesics which all begin from the same point on the

boundary and pass through an AdS-like space time with non-monotonic Veff . The red lines indicate

the limits to which the black curves tend as L → Lcrit.
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Figure 11: Plot of the effective potential for three null geodesics: one with the critical angular

momentum, Lcrit (the solid black curve), one with L < Lcrit (the lowest curve, dashed blue), and

one with L > Lcrit (top curve, dashed red).

We are left with the situation where we do not have enough information to carry

on recovering f(r) past the rightmost maximum in the effective potential; there is no

approximation we could attempt to make without already knowing more about the form

of Veff . Although we have the extra endpoint data (i.e. the top branch of figure 10), we

are unable to use it to extract f(r).
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Having discovered this apparent limitation in the extraction of the bulk metric, we

should ask ourselves how often we would expect to find metrics which give non-monotonic

effective potentials for the null geodesics. In other words, how often do we find spacetimes

which allow stable orbits of light rays? Whilst it is very easy to construct metrics by hand

which allow this, in physical systems circular orbits of light rays are a rarity. Indeed, recent

work by Hubeny et al., [23], indicates that for metrics corresponding to a gas of radiation

in AdS, it is impossible for circular null geodesics to occur.

Admittedly our restrictive case of metrics of the form of (2.1) are unrealistic, as any

metric of this form necessarily has opposite sign pressure and energy density components

of the stress tensor, and as our methods currently do not work in the more general metrics,

(3.29), this is merely an observation.

One scenario in which null geodesics can go into circular orbits is around black holes,

and we now conclude the current section by considering such an example.

6.2 Metrics containing a singularity

We ask what information can be retrieved if the metric contains a singularity at its cen-

tre, for example Schwarzschild-AdS. We again cannot recover the entirety of f(r), as the

geodesics which pass behind the horizon will not return out to the boundary. Thus whilst

in the non-monotonic case we had extra information (the top branch of figure 10) available

but no way to get past the jump in the minimum radii of the geodesics, here we only have

a reduced spectrum of endpoints from which to recover f(r).

The endpoints we do obtain are those with angular momentum above some critical

value, and so we can use the above iterative method to recover f(r) down to a certain

critical radius (which will be greater than the horizon radius). However, any null geodesics

which pass behind the horizon will always terminate at the singularity, and so we are unable

to obtain any further information using our iterative method.8

For an example we consider five dimensional Schwarzschild-AdS, in which the metric

function f(r) is given by:

f(r) = 1 +
r2

R2
−

r2
h

r2

(

r2
h

R2
+ 1

)

(6.3)

where R is again the AdS radius, and rh is the horizon radius. We set R = 1 as usual, and

note that the effective potential for null geodesics is given by:

Veff =

(

1 +
r2

R2
−

r2
h

r2

(

r2
h

R2
+ 1

))

L2

r2
− E2 (6.4)

For a null geodesic to avoid hitting the singularity at r = 0, we require Veff = 0 for

some r > rh. The lowest L for which this will happen will be when the gradient of Veff is

also zero. Differentiating (6.4) with respect to r, and setting equal to zero gives

2L2

r5

(

2
(

r2
h + r4

h

)

− r2
)

= 0 (6.5)

8As mentioned in the introduction, there are numerous papers devoted to the extraction of behind the

horizon information, and we do not concern ourselves with this here.
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which is equal to zero when r =
√

2
√

r2
h + r4

h. Thus for the case where rh = 1 say, the

minimum r which can be probed by the null geodesics is r = 2, and hence we can obtain

information about the metric function f(r) from r = ∞ down to r = 2.

7. Discussion

We have seen that the endpoints of null geodesics can be used to recover information about

the bulk in asymptotically AdS spacetimes. By varying the ratio of angular momentum

to energy of the geodesics we are able to systematically probe to different radii, and this,

combined with the appropriate AdS boundary conditions, allows us to reconstruct the

metric. What is perhaps quite surprising is that this local, geometric information about

the spacetime can be completely recovered in certain scenarios; in a metric of the form

of (2.1), as long as the effective potential for the null geodesics is monotonic, we are able

to completely recover the function f(r). Whilst this is of course due to the fact that we

have severely restricted our spacetime in such a scenario, to ensure that the amount of

information we require is contained within the bi-local spectrum of endpoints, it is still

impressive that the recovery process itself is so simple. Its simplicity lies in the remarkable

nature of our expression for the gradient of the endpoints of null geodesics (3.13); to have

that the relative angular momentum of the geodesic corresponds to the endpoint in such

an accessible fashion is astounding, and forms the basis of our ability to reconstruct the

bulk.

Focusing on the cases with a monotonic Veff , we developed two different methods

for carrying out the recovery of the bulk information, both of which involved iteratively

reconstructing f(r) from large r down to the centre. In the process of actually using

these methods to numerically extract the bulk information, we made several refinements

to increase their efficiency, the most important of which involved our approximation of the

gradient of f(r). In both our original methods, we were consistently overestimating f ′(r),

a problem that was significantly affecting their accuracy, unless we kept the iterative step

size very small. Whilst we suggested a number of ways of resolving this problem, all made

the process of recovering f(r) considerably more complex to implement, thus requiring a

great deal of extra computational effort. Given that one of the main aims in this work was

to produce a practical method for the recovery of the metric information, these resolutions

were not acceptable. Rather than investigating further methods of approximating f ′(r),

we looked at the question of why we needed an approximation to the gradient of f(r) at

all, as f ′(r) does not appear anywhere in our original geodesic equations.

The solution lay in finding an alternative to the Laurent series we were using to ap-

proximate the section of the geodesic path close to its minimum radius. Whilst this had

been the natural approximation to use in our first method, there was a simpler one we

could apply in the second, which stemmed from a crucial difference in the type of curve we

were trying to approximate. In method I, the curve in question is infinite at the minimum

radius, because the g(y, r) term (see (3.6)) appears in the numerator of (3.24). In method

II, on the other hand, the g(y, r) term appears in the denominator of the relevant equation,

(3.37), which results in the curve being zero with an infinite gradient. This allowed us to
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approximate the curve geometrically by a vertical parabola, and thus the integral by the

corresponding parabolic area formula. This modification enabled us to estimate f(r) far

more efficiently, as it removed any reference to f ′(r). It also greatly improved the ability of

the iterative process to extract what one might consider the important metric information:

the numeric values relating to the “mass” and “extent” of whatever physical phenomenon

was causing the deviation from pure AdS.

We concluded the project by considering two alternative scenarios: where the effective

potential was non-monotonic, and where the metric contained a singularity at the centre. In

each case, we were only able to recover f(r) down to a certain critical radius, corresponding

to a local maximum of Veff (see figure 11). We were unable to continue the process of

recovering f(r) any further as, in the non-singular case, there is a non-negligible “jump” in

the minimum radii of the geodesics, due to the shape of the effective potential, which we

cannot well approximate. Thus although we have additional endpoint data, we are unable

to use it to extract more of the bulk information; we do, however, note that in physical

situations, which is where we would eventually hope to apply these techniques, we do not

often encounter such metrics (i.e. spacetimes in which light rays can enter into circular

orbits). For those metrics containing a singularity, we do not have any further endpoints

with which to continue recovering f(r), as any null geodesic travelling to lower radii will

pass behind the horizon and terminate at the singularity.

A possible extension of this work is in considering less restrictive forms of the metric,

such as those where we have relaxed spherical symmetry, or where the metric can evolve

with time. Whilst our previous attempt (in section 3.3) at modifying the iterative methods

to work in a more general spacetime failed due to the extra unknowns we introduced, this

does not mean every modification would be so problematic. One can envisage, for example,

a situation in which the metric function fluctuates over time, in such a way that the effective

potential for the null geodesics remains monotonic throughout. In this scenario, whilst the

process might be more complicated, we should still be able to extract the entire bulk metric,

including the time dependence, from the complete set of null geodesic endpoints.

Another natural extension of this project would be to consider the endpoints of space-

like geodesics, and examine whether they can be used to recover more information about

the bulk in the various scenarios. The main issue with producing a method to iteratively

recover the metric information as we have done here with the null geodesics is that our

equation (3.12) involving the gradients of the endpoints is significantly more complicated.

For spacelike geodesics we have two independent parameters (L and E) to consider; sim-

ply using their ratio as we did in the null case is no longer sufficient. Other works have

examined this in more detail, e.g. [14], and they give encouragement that progress can be

made in this direction. The challenge then would be whether a computationally practical

method can also be found.
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A. Null geodesic paths in AdS space

For the null geodesic paths we have ẋ2 = 0, and we can solve the following three equations

numerically to provide the plots of the geodesics:

E =

(

1 +
r2

R2

)

ṫ (A.1)

L = r2φ̇ (A.2)

−
(

1 +
r2

R2

)

ṫ2 +
ṙ2

1 + r2

R2

+ r2φ̇2 = 0 . (A.3)

It is also useful to calculate the geodesics analytically. This can be done most easily

by rewriting the original equation for the metric (2.1) in a new form. Rescaling the radial

and time coordinates r → R tan(r) and t → R t gives:

ds2 = −R2
(

sec2(r)dt2 + sec2(r)dr2 + tan2(r)dφ2
)

(A.4)

where we have suppressed two of the angular coordinates as before. This leads to the

modified constraint equations:

E = R2 sec2(r)ṫ (A.5)

L = R2 tan2(r)φ̇ (A.6)

−R2
(

sec2(r)ṫ2 + sec2(r)ṙ2 + tan2(r)φ̇2
)

= 0 (A.7)

Combining the three equations, by substituting (A.5) and (A.6) into (A.7) to eliminate

ṫ and φ̇ we have:

−
E2

R2 sec2(r)
+ R2 sec2(r)ṙ2 +

L2

R2 tan2(r)
= 0 (A.8)

Rearranging, and again using (A.5) to eliminate the dependence on λ gives:

√

E2

(R2 sec2(r))2
−

L2

R4 tan2(r) sec2(r)
= ṙ =

dr

dt

dt

dλ
=

dr

dt

E

R2 sec2(r)
(A.9)

and so

dr

dt
=

√

1 −
L2

E2 sin2(r)
(A.10)

Using the substitution x = cos(r)√
1−L2/E2

this equation becomes:

dx

dt
= −

√

1 − x2 (A.11)

which implies x = − sin(t + t0) and thus that

cos(r) = −

√

1 −
L2

E2
sin(t + t0) (A.12)
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We can also calculate the dependence of φ on t:

L

R2 tan2(r)
= φ̇ =

dφ

dt

dt

dλ
=

dφ

dt

E

R2 sec2(r)
(A.13)

thus:
dφ

dt
=

L

E sin2(r)
(A.14)

which can be combined with (A.12) to give:

tan(φ + φ0) =
L

E
tan(t + t0) (A.15)

Note that the dependence of the geodesics on the AdS radius of curvature has been

scaled out in (A.12) and (A.15) by the choice of coordinates.

B. Cancelling the divergent term from the Leibniz rule

To make sure our expression for the derivative of t with respect to y is finite, we have to

combine the two terms from:

dt(y)

dy
= 2

d

dy

(∫ ∞

rmin

g(y, r)

f(r)
dr

)

(B.1)

= 2y

∫ ∞

rmin

(g(y, r))3

r2
dr −

(

2 g(y, r)

f(r)

)

∣

∣

∣

r=rmin

drmin

dy
(B.2)

to eliminate the divergent piece. We need an expression for drmin/dy, obtained using our

expression for y in terms of the minimum radius, (3.38),

drmin

dy
= 1

/

(

dy

dr

∣

∣

∣

r=rmin

)

=
1

√

f(rmin)

(

1 −
rminf ′(rmin)

2 f(rmin)

)

(B.3)

which we then use to rewrite the second term of (B.2) as an integral from rm to ∞:

(

2g(y, r)

f(r)

)

∣

∣

∣

r=rm

drm

dy
=

∫ ∞

rm

(f ′(r) − rf ′′(r))
√

f(r) g(y, r)
(

f(r) − r
2f ′(r)

)2 dr

−
∫ ∞

rm

f ′(r) g(y, r)
(

f(r) − r
2f ′(r)

) √

f(r)
dr

+

∫ ∞

rm

2 y (g(y, r))3

r2
dr

We see that the third term above cancels precisely with the divergent integral in (B.2),

and after rearranging we are left with

dt(y)

dy
=

∫ ∞

rm

r (f ′(r))2 − 2 rf ′′(r) f(r) g(y, r)

2
(

f(r) − r
2f ′(r)

)2 √

f(r)
dr (B.4)

which is finite.
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C. Attempting to recover the bulk metric in the more general spacetime

In the more general case of a spacetime described by equation (3.29), we have two unknown

functions f(r) and h(r) to recover, along with r itself, and hence we need three linearly

independent equations. We appear to have them in equations (3.31), (3.32) and (3.38).

Following the method of section 3.2, we take r large enough so that the spacetime is

approximately pure AdS, and solve

y2
n =

r2
n

f(rn)
=

r2
n

r2
n + 1

(C.1)

to give rn, and thus also f(rn) = 1/h(rn) = r2
n + 1.

We now consider a geodesic with slightly lower y and follow the method as before,

except that we now use the expressions for t and φ given in (3.31) and (3.32). Beginning

with the expression for t, we split it up as in (3.18) and evaluate the second integral as in

(3.19). This leaves

tn−1 ≈ 2

∫ rn

rn−1

1

f(r)√
h(r)

√

1
f(r) −

y2
n−1

r2

dr + π − 2 arctan

(

√

(

1 − y2
n−1

)

r2
n − y2

n−1

)

(C.2)

where we can approximate the first integral by its lowest order Laurent expansion around

the minimum radius. This gives

tn−1 ≈
4
√

rn − rn−1

√

h(rn−1)
√

2f(rn−1)
rn−1

− f ′(rn−1)
+ π − 2 arctan

(

√

(

1 − y2
n−1

)

r2
n − y2

n−1

)

(C.3)

Similarly for the expression for φ we obtain

φn−1 ≈
4
√

rn − rn−1

√

h(rn−1)

yn−1

√

2f(rn−1)
rn−1

− f ′(rn−1)
+ 2 arctan





yn−1
√

(

1 − y2
n−1

)

r2
n − y2

n−1



 (C.4)

which initially appears to be linearly independent of (C.3), as although the first term

in (C.4) is simply the first term in (C.3) divided by yn−1, the two second terms appear

different. Even rewriting the second and third terms of (C.3) using

π

2
− arctan

(

√

(

1 − y2
n−1

)

r2
n − y2

n−1

)

= arctan





1
√

(

1 − y2
n−1

)

r2
n − y2

n−1



 (C.5)

does not linearly relate to the second term of (C.4), as there is the extra yn−1 factor inside

the arctan.

The degeneracy occurs because we are attempting to use these two equations, along

with y2
n−1 = r2

n−1/f(rn−1), to recover rn−1, f(rn−1) and h(rn−1); we already have values

for the other variables. Thus the only term which is of importance in recovering the

unknowns is the first, and the apparent independence of the two equations has arisen from
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our approximation of the second term. Hence equations (C.3) and (C.4) effectively both

reduce to: √
rn − rn−1

√

h(rn−1)
√

2f(rn−1)
rn−1

− f ′(rn−1)
= constant . (C.6)

We are thus left with only two equations to determine the three unknowns, and so the

method of extracting the metric functions immediately breaks down.9
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